Module-2: Analytic Functions-I

1 Introduction

The concept of analytic function is very important in complex analysis. In this module, we study some properties of analytic functions.

Definition 1. A complex valued function f(z) defined in a domain D is said to be analytic in D if f(z) has a derivative at each point of D. The terms regular and holomorphic are also used with identical meanings in state of analytic.

A function f(z) is said to be analytic at a point z_0 if it is analytic in some neighbourhood of z_0 , i.e. if there exist a neighbourhood of z_0 at each point of which f(z) is differentiable.

If f(z) is not analytic at a point z_0 , then z_0 is called a singular point of f(z).

Remark 1. Real valued functions of complex variable are nowhere analytic unless these are constant valued. As for example, the functions |z|, Re(z), Im(z), etc. are nowhere analytic, since these are real valued but not constant on any domain in the complex plane.

Remark 2. The sum, difference and product of analytic functions are analytic in the same domain. The quotient f(z)/g(z) of two analytic functions f(z) and g(z) is also analytic in a domain, provided $g(z) \neq 0$ in the domain. However, the sum etc. of non-analytic functions may be analytic.

Theorem 1. Let f(z) be analytic in a domain D such that $f(D) \subset D_1$. If a function g is analytic in the domain D_1 , and F(z) = (gf)(z), then F(z) is analytic in D.

Proof. Let $z_0 \in D$ is arbitrary. By Theorem ??, the function F(z) is differentiable at z_0 and moreover,

$$F'(z_0) = g'(f(z_0))f'(z_0).$$

Since z_0 is an arbitrary point in D, it follows that F(z) is differentiable in D and hence analytic in D.

Example 1. Let $f(z) = \frac{1}{z-2}$ and $g(z) = z^3$. Discuss the analyticity of the composite function gf.

Solution. The function f(z) = 1/(z-2) is analytic in the domain $D = \mathbb{C} \setminus \{2\}$ and g(z) is analytic in \mathbb{C} . Now, $f(D) = \mathbb{C} \setminus \{0\}$ which is contained in \mathbb{C} , the domain of g. Therefore,

$$\frac{d}{dz}[(gf)(z)] = g'(f(z))f'(z) = \frac{3}{(z-2)^2}\frac{-1}{(z-2)^2} = \frac{-3}{(z-2)^4}, \ z \neq 2.$$

Example 2. If

$$f(z) = \begin{cases} \frac{x^2 y(y-ix)}{x^4 + y^2}, & z \neq 0\\ 0, & z = 0, \end{cases}$$

then prove that $\frac{f(z)-f(0)}{z} \to 0$ as $z \to 0$ along any straight line but f'(0) does not exist.

Solution. Suppose that $z \to 0$ along any straight line y = mx. Then

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{(x,y) \to (0,0)} \frac{x^2 y(y - ix)}{(x + iy)(x^4 + y^2)}$$
$$= \lim_{(x,y) \to (0,0)} \frac{-ix^2 y}{x^4 + y^2}$$
$$= \lim_{x \to 0} \frac{-imx^3}{x^2(x^2 + m^2)} = 0.$$

Along the path $y = x^2$, we have

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{(x,y) \to (0,0)} \frac{-ix^2y}{x^4 + y^2}$$
$$= \lim_{x \to 0} \frac{-ix^4}{2x^4} = -\frac{i}{2}$$

This shows that f'(0) does not exist.

Entire function

A complex function f(z) is said to be entire or integral if it is analytic in the entire complex plane. Any polynomial P(z), e^z , $\sin z$, $\cos z$, etc. are examples of entire functions.

It is to be noted that the sum and the product of two or more entire functions are entire functions.

Singular point

If a function f(z) fails to be analytic at a point z_0 but in every neighbourhood of z_0 there exist at least one point where the function is analytic, then the point z_0 is said to be a singular point or singularity of f(z).

The function f(z) = 1/z is analytic except for z = 0 and in each deleted neighbourhood of z = 0, f(z) is analytic. Therefore by definition z = 0 is a singular point of f(z) = 1/z. For the function

$$f(z) = \frac{z^2 + 2}{z(z-1)^2(z+3)}$$

z = 0, z = 1 and z = -3 are singularities of f(z), as the function is analytic except these points.

Theorem 2. Suppose that f(z) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$. Then the first order partial derivatives of u and v at (x_0, y_0) satisfy

$$u_x = v_y \text{ and } u_y = -v_x.$$
 (1)

Proof. Given that f(z) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$. Therefore

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
$$= \lim_{(x,y) \to (x_0,y_0)} \frac{\{u(x,y) - u(x_0,y_0)\} + i\{v(x,y) - v(x_0,y_0)\}}{(x - x_0) + i(y - y_0)}.$$
 (2)

Since $f'(z_0)$ exists, (2) must exists for all modes of approach of the point (x, y) to (x_0, y_0) and all the limiting values are same. Assuming $z \to z_0$ along a line parallel to real axis, i.e. $y = y_0$ and $x \to x_0$, we obtain from (2) that

$$f'(z_0) = \lim_{x \to x_0} \frac{\{u(x, y_0) - u(x_0, y_0)\} + i\{v(x, y_0) - v(x_0, y_0)\}}{x - x_0}$$

=
$$\lim_{x \to x_0} \frac{u(x, y_0) - u(x_0, y_0)}{x - x_0} + i\lim_{x \to x_0} \frac{v(x, y_0) - v(x_0, y_0)}{x - x_0}$$

=
$$u_x(x_0, y_0) + iv_x(x_0, y_0).$$
 (3)

Now letting $z \to z_0$ along a line parallel to imaginary axis, i.e. $x = x_0$ and $y \to y_0$, we obtain from (2) that

$$f'(z_0) = \lim_{y \to y_0} \frac{\{u(x_0, y) - u(x_0, y_0)\} + i\{v(x_0, y) - v(x_0, y_0)\}}{i(y - y_0)}$$
$$= \lim_{y \to y_0} \frac{u(x_0, y) - u(x_0, y_0)}{i(y - y_0)} + \lim_{y \to y_0} \frac{v(x, y_0) - v(x_0, y_0)}{(y - y_0)}$$
$$= -iu_y(x_0, y_0) + v_y(x_0, y_0).$$
(4)

Comparing (3) and (4) and equating the real and imaginary parts we obtain (1).

Note 1. The equation $u_x = v_y$ and $u_y = -v_x$ are known as Cauchy-Riemann equations (C-R equations).

Note 2. The C-R equations are the necessary conditions for the existence of derivative but these are not sufficient. In other words, if f(z) is differentiable at z_0 , then the C-R equations are satisfied at z_0 but the converse may not be true.

Note 3. In polar form the C-R equations can be written as

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

Remark 3. We know that the pair of conjugate complex variable z and \overline{z} can be written as

$$x = \frac{z + \overline{z}}{2}, \quad y = -i\left(\frac{z - \overline{z}}{2}\right).$$
owing differential operators:
$$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 1 \quad (\partial - \partial)$$

Now we introduce the following differential operators:

$$\frac{\partial}{\partial z} := \frac{\partial}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
$$\frac{\partial}{\partial \overline{z}} := \frac{\partial}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

If f = u + iv, then it follows that

$$f_z = \frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$
$$= \frac{1}{2} [(u_x + v_y) + i(v_x - u_y)].$$

Similarly, we obtain

$$f_{\overline{z}} = \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$
$$= \frac{1}{2} [(u_x - v_y) + i(u_y + v_x)].$$

Therefore, the C-R equations are exactly equivalent to $f_{\overline{z}}(z_0) = 0$ which is also referred to as the complex form of the C-R equations.

With this notation, we have the following alternate form of Theorem 2.

Theorem 3. A necessary condition for a complex - valued function f = u + iv to be differentiable at z_0 is that $f_{\overline{z}}(z_0) = 0$.

The following example shows that the validity of C-R equations at a point is not sufficient to ensure the existence of the derivative at that point.

Example 3. Let

$$f(z) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} + i\frac{x^3 + y^3}{x^2 + y^2}, & z \neq 0\\ 0, & z = 0. \end{cases}$$

Show that though C-R equations are satisfied at (0,0), f'(0) does not exist.

Solution. Let f(z) = u(x, y) + iv(x, y). Then

$$u(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

and

$$v(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

Therefore

$$u_x(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x} = \lim_{x \to 0} \frac{x}{x} = 1.$$
$$u_y(0,0) = \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y} = \lim_{y \to 0} \frac{-y}{y} = -1.$$
$$v_x(0,0) = \lim_{x \to 0} \frac{v(x,0) - v(0,0)}{x} = \lim_{x \to 0} \frac{x}{x} = 1.$$

$$v_y(0,0) = \lim_{y \to 0} \frac{v(0,y) - v(0,0)}{y} = \lim_{y \to 0} \frac{y}{y} = 1$$

Since $u_x = v_y$ and $u_y = -v_x$, C-R equations are satisfied at (0,0). Now on y = mx we have

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z}$$

=
$$\lim_{(x,y) \to (0,0)} \frac{(x^3 - y^3) + i(x^3 + y^3)}{(x^2 + y^2)(x + iy)}$$

=
$$\lim_{x \to 0} \frac{x^3(1 - m^3) + ix^3(1 + m^3)}{x^3(1 + m^2)(1 + im)}.$$

Since the value of the limit depends on m, f'(0) does not exist.

Example 4. For the function defined by $f(z) = \sqrt{|xy|}$, show that the C-R equations are satisfied at z = 0, but the function is not differentiable at this point.

Solution. Considering f(z) = u(x, y) + iv(x, y) we have $u(x, y) = \sqrt{|xy|}$ and v(x, y) = 0. We note that the given function f(z) is identically zero on the real and imaginary axes. Therefore, it is trivial to see that

$$u_x(0,0) = u_y(0,0) = v_x(0,0) = v_y(0,0) = 0.$$

As for example,

$$u_x(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0$$

Thus, C-R equations hold at z = 0. However, taking $h = re^{i\theta} \neq 0$ with $r \rightarrow 0$, we see that

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{r \to 0} \frac{|r^2 \sin \theta \cos \theta|^{1/2}}{r(\cos \theta + i \sin \theta)}$$
$$= \frac{e^{-i\theta} |\sin 2\theta|^{1/2}}{\sqrt{2}}$$

which clearly depends upon the value of θ . From this we can conclude that f is not differentiable at z = 0, though f satisfies the C-R equations at the origin.

Example 5. Find the nature of C-R equations for the function $f(z) = |z|^2$.

Solution. Here $f(z) = |z|^2 = x^2 + y^2$. Therefore

$$u(x,y) = x^2 + y^2$$
 and $v(x,y) = 0$.

Differentiating we get

$$u_x = 2x, \ u_y = 2y, \ v_x = 0, \ and \ v_y = 0.$$

Thus C-R equations are not satisfied unless x = y = 0 and hence f'(z) does not exist at any point $z \neq 0$.